

Radiation-Induced transient effects in near Infrared focal plane arrays

Robert A. Reed, NASA/GSFC J. Pickel, Oucjek R&T Inc, P. Marshall, Consultant, A. Waczynski, NASA/GSFC, R. McMurray, NASA/Ames, G. Gee, NASA/GSFC, E. Polidan, NASA/GSFC, S. Johnson, NASA/GSFC, M. McKeivey, NASA/Ames, K. Ennico, NASA/Ames, and R. Johnson, NASA/Ames

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow,

٠

Agenda

- Background/Problem
- Testing Goals and Strategy
- · Test Data and Discussion
- Conclusions

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow. Scotland by Robert Reed

Even Small Transients can be Problematic for NIRCAM

- · Read noise requirement is very low
- Essentially every primary particle and every secondary particle causes a transient that exceeds noise level
- Cosmic ray rejection algorithms can tolerate limited number of hits within integration time
- Problem is exacerbated by:
 - Crosstalk (charge spreading to neighboring pixels)
 - Multi-pixel hits (e.g., hit detector and ROIC in different pixels)
 - Secondary particles that are not spatially correlated to primary

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed

TESTING GOALS, STRATEGY AND APPROACH

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgov Scotland by Robert Reed 5

Transient Test Objectives

- Characterize proton single events as function of energy and angle of incidence
 - Pulse height distributions provide information for model calibration
- · Measure charge spread (crosstalk) to adjacent pixels
 - Key parameter for determining number of disturbed pixels
- · Assess transient recovery time
 - Look for long transients (collection of ionization-induced charge or persistence of radiation-induced dark current)
 - Characterize reset after hit

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow Scotland by Robert Reed

Devices Tested

- Test ROIC without detectors and test SCA (detectors plus ROIC) to separate effects
- Test 1024x1024 versions (H1RG and SB291)
 - Subset of identical circuitry on 2048x2048 versions

Device	Test Date	Energies	Angles	Comments
HIRG ROIC	5-16-02	30, 63	0	Single event and dose
H1RG SCA	10-16-02	30, 63	0, 45, 67	Single event, dose and secondaries from Al
SB291 ROIC	2-11-03	30, 63	0, 45, 67	Single event and dose
SB291 SCA	3-31-03	30, 63	0, 45, 67	Single event, dose and secondaries from Al

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow. Scotland by Robert Reed 7

Transient Test Strategy

- Use 30 and 63 MeV protons
- Use 0, 45 and 67 degree incidence
- . Use low flux for single events
 - 1e3 to 1e5 p/cm²-s range
- Use quilt-mode readout of 20x100 subarray
- Multiple samples at 10 Hz (100 ms) using variable integration time Fowler-mode integrations (reset, read₁, read₂, ... read₁, reset)

	Mode	#Reads	Time Between Reset (ms)
	Fl	2	200
1	F2	4	400
	F5	10	1000
	F10	20	2000

- Designed to capture transient recovery

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed

Typical Proton-Induced Pulses

H1RG SCA 30 MeV

	0 Degrees										
5331	170	4	19	-17	2	8					
100	-74	-55	52	-32	-15	92					
20	20	-67	388	430	740	8121					
4	4	507	28057	7562	14056	4931					
-89	38	67	786	16245	1791	129					
32	-136	87	2489	14295	24719	847					
			7267								

-34	-23	70	47	-64	3	-23
23	44	\$	-20	7	17	-17
9	-1	362	15883	12600	449	29
17	-20	366	16369	14280	486	27
-27	26	36	249	215	49	-1
-3	0	23	0	-18	22	261
7	-10	37	17	-40	10	50

-79	25	35	-7	-34	0	23
			37			
			291			
-27	22	253	17941	16257	555	56
-10	-19	72	5522	5580	8048	3109
32	22	-53	66	245	6379	2290
40	-123	14	-13	4	-190	-450

			-34			
8	52	ş	7	47	ኝ	7
33	-	197	415	72	8	3
19	250	15232	20544	870	46	
4	56	4270	4773	284	19	8
-3	-30	40	57	10	-111	-82
7	44	-17	-17	-20	23	-23

379	5	61	13	-107	-43	67
470						
43	216	11300	26300	1941	14928	5200
14						
43	-15	12	486	-20	122	433
4178	1455	223	13403	2251	362	22117
42047						

	ننا	_		- 11	-20		_==
i	-30	3	64	-20	-13	3	-17
	-64	-7	34	20	-23	-20	40
	-44	-15	52	531	52	2	-13
- 1	7	42	2452	38147	4144	130	-25
1				17370			
1	10	-3	14	272	58	11	-40
				-37			

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow. Scotland by Robert Reed 11

Typical Proton-Induced Pulses

SB291 SCA 30 MeV

			145			
-18	23		113			
43	105	16	6652	826	4	-17
-1	4	-4	4	8	٠	12
-1	14	0	-10	0	18	2
-1	2	-18	4	12	-14	12
-1	191	13486	16126	64	-18	123
-2	18	861	230	-1	-1	٥
			4			
-1	14	133	2322	14	4	-10
-10	-8	16	29	-18	-23	2
4	-22	23	-10	16	25	-41

43	-37	4	-2	16	25	-16
-14	-27	22	12	-10	4	٥
8	14	-22	2	4	-2	16
388	397	22	173	769	54	701
34	51	-13	-26	13	61	1254
1048	2338	393	22447	7558	226	109
			14716			
			-145			
10	35	-23	16		-8	-27

-10	-8	16	20	-18	-23	2
4	22	23	-10	16	25	7
-12	-13	507	732	322	-10	ş
4	11	4626	7004	30	-16	
2	4	-10	2	-8	-20	14
6	20	-23	-10	- 6	-2	-
-	- 6	1	-6	6	-	-18

6	14	-23	25	12	-6	4
16	-10	4	6	4.	13	4
701	1013	46	2089	1581	-3	-22
1254	2515	247	22510	12965	90	-5
109	275	46	40	8	-6	4
-27	180	111	-15	13	2	2
~~~	-		- A	-	-4	-14

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed



# Hit Size Expected to Scale With Proton Energy and Angle of Incidence



- dE/dX { Linear Energy Transfer (LET) } is function of energy and material - lower at 63 MeV than 30 MeV
  - HgCdTe: 8.43 keV/um at 30 MeV; 4.91 keV/um at 63 MeV (x0.58)
  - InSb: 7.08 keV/um at 30 Mev; 4.09 Kev/um at 63 MeV (x0.58)
  - Si: 3.42 keV/um at 30 MeV; 1.92 keV/um at 63 MeV (x0.56)
- Charge generated ~ LET * Path
- Path through device scales as cos(angle)
  - x 1.41 at 45 degrees
  - x 2.56 at 67 degrees

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed 13



#### **PULSE HEIGHT DISTRIBUTIONS**



- Difference between first read after reset and final read
- Data histogramed into 100 e bins
- · Analysis for two types of distributions:
  - Distribution of pixel charges
    - Some charge from hit pixels counted in neighboring pixels
  - Distribution of total hit charges
    - Hits identified and all charge from neighboring pixels added



Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed





### **SCA Pulse Height Distribution**

Distribution of pixel charges

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow Scotland by Robert Reed







### **TOTAL CHARGE DISTRIBUTIONS**

Total Charge: Charge to hit pixel and

affected neighbors summed

Peak Charge: Charge to hit pixel only

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow,





# Total Charge Peaks Scale With Angle and Energy as Expected



Peak Locations				
Energy	Angle		H1RG	
30	0		23000	
30	45		25000	
30	67		48000	
63	0		9000	
63	45		13000	

Angle Scaling		
Expecte	d & S	HIRG
1.00	88 J. S.	1.00
1.41	133	1.09
2.56	2.33	2.09
1.00	1.00	1.00
1.41	1.25	1.44
2.56	2.36	2.78

Energy Scaling		
Expected	\$	HIRG
1.00		1.00
1.00		1.00
1.00	1.00	1.00
0.58	- 8.07	0.39
0.58	243	0.52
0.58	9.08	0.52

H1RG SCA pulses are somewhat larger than SB291SCA pulses

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed

19



## Measured Proton Crosstalk in H1RG SCA







- Hits randomly distributed across pixel but all at same angle
- Hits are stacked by registration to hit pixel, not to hit centroid
- In some cases, charge is still above noise even at 2 pixels out from hit pixel

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed



## Measured Proton Crosstalk in SB291 SCA







- · Hits randomly distributed across pixel but all at same angle
- Hits are stacked by registration to hit pixel, not to hit centroid
- In some cases, charge is still above noise even at 2 pixels out from hit pixel

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow, Scotland by Robert Reed 21



#### **Observations**



- Pulses generally scale with energy and with angle as expected
- Unipolar pulses in SB291 (same polarity as detector)
- Bipolar polarity pulses in H1RG ROIC
- Pulses are smaller in ROIC than SCA for both H1RG and SB291
- Pulses with same polarity as detector have comparable size for H1RG ROIC and SB291 ROIC
- Pulses are larger in H1RG SCA than SB291 SCA
- Crosstalk is larger in SB291 ROIC than H1RG
- Crosstalk is larger in H1RG SCA than SB291
- Hit pixel recovery <100 ms or upon reset</li>

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow Scotland by Robert Reed



### **General Conclusions**



- Whatever technology chosen, JWST will have to live with cosmic ray hits
- Overall transient responses are similar at SCA level
  - ROIC hits are larger for SB291 than H1RG
  - H1RG SCA hits are larger (apparently due to detector)
  - H1RG proton crosstalk is worse (probably related to smaller pitch)
- Note that smaller pixels would have lower hit probability in space environment but more crosstalk

June 21-25, 2004

Presentation at SPIE Astronomical Telescopes Conference in Glasgow. Scotland by Robert Reed